6 Transition de phase

6.1 Phase et transition de phase

Il existe plusieurs phases de la matiere,
les plus connus sont bien évidemment
les états solides, liquides et gazeux, R
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mais il existe aussi des phases plus exo- A
tiques de la matiere comme le plasma,
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les supraconducteurs ou les super- Gaz A
fluides.  Toutes ces phases ont des A "6,
propriétés physiques différentes. 11 est E“ Liquide
possible qu’un matériaux change de i;

phase suite a une transition de phase : ‘\6\(\@2\:‘\
(logique) qui traduit une instabilité Solide |# <

pour les conditions subis par le systeme.

Enthalpie d'un systéme

Figure 6: Schéma de transition de

6.2 concavité et convexité phase

des fonctions d’état
6.2.1 concavité de I’entropie

Il est possible de montrer que I’entropie S

est une fonction concave de U et V dans 'espace d’état (U, S, V). Il est possible
de le prouver en utilisant le premier et le second principe de la thermodynamique
(cf directement le cours). On obtient alors les conditions globales de la concavité
pour ’entropie comme:

S(U — AU, V) + S(U + AU, V) < 25(U, V) (69)

Cela vaut pour représenter S en fonction de U mais aussi de la méme fagon
pour représenter S en fonction de V.

pour décrire des transitions de phase, caractérisées par des discontinuités
des dérivées partielles des variables d’état U , S et V , il est nécessaire de
déterminer également les conditions locales de concavité de I’entropie S. Celles-
ci sont définies au voisinage d’un point de 'espace des états (U, S,V). Pour
calculer cela, on procede de la méme fagon que dans le paragraphe précédent et
on trouve alors les conditions locales de la concavité de I'entropie:

9*S(U,V) <0 9*S(U,V)
ouz ov?
ainsi que la courbure de Gauss de la surface S(U, V) (découlant de la con-
dition globale précédente:

<0 (70)

P2S(U,V) *S(U,V) (32S(U,V)>2 -

ou? ov? ouov (71)
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6.2.2 convexité de I’énergie interne

La courbure de la fonction d’état entropie S(U,V) & volume constant V' est
Popposé de la courbure de la fonction d’état réciproque énergie interne U (S, V)
a volume constant V' . Ces fonctions sont symétriques par rapport a la bissectrice
dans le plan (S,U).

En utilisant le relation de Gibbs et la différentielle de ’entropie, on trouve
alors la Condition locale de convexité de I’énergie interne a 1’équilibre:

ove BYE
ainsi que sa courbure de Gauss positive:

2 2
PUS.V) __,28(8.V) )

Q2U(S,V) 2U(S,V) (62U(S,V))2 73)
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6.2.3 stabilité et entropie
6.3 Stabilité de ’entropie

La stabilité d’'une quantité de matiere

dans un certain état dépend du signe sh stablilité locale
de la courbure de Uentropie S(U, V) par ‘
rapport aux variables d’état énergie in- |
terne U et volume V' dans l'espace des stable | instable
états (U,S,V). La stabilité de 1'état |
dépend du signe de la dérivée seconde .

de U'entropie par rapport a ses variables }
d’état. Dans la figure |7} le critere de sta- o ‘
bilité locale est donné par g;‘fz < 0 et

son critére de stabilité globale est donné Figure 7: Schéma de stabilité locale
par l'eq (74) ou la courbure globale est

négative ou nulle:

=

S(U - AU, V) + S(U + AU, V) < 28(U, V) (74)

Il peut aussi y avoir une coexistance
de phase si la courbure de l’entropie sh
par rapport a l’énergie interne est nulle
comme illustré dans la figure [9 ce qui
peut étre décrit par I’équation :

transition de phase

phase 2

phase 1

S(U,V) = AS(UL, V) + (1 = \)S(Us, V) e 4
(75) IV
avec A € [0.1] By 7

=Y

Figure 8: Schéma de coexistence lo-
cale de phase
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6.3.1 stabilité et potentiels ther-
modynamiques

La stabilité d’'une quantité de matiere

dans un certain état dépend du signe de

la courbure de ’énergie interne U (S, V') par rapport aux variables d’état entropie
S et volume V dans I'espace des états (U, S, V). Cela fonctionne exactement
comme ce que nous avons présenté a la partie précédente, mais cette fois on
écrit I’équation de stabilité:

U(S, V) =AU(S1, Vi) + (1 = NU(S2, V2) (76)

Lors de la transition de la phase
«a a la phase 8, nous avons alors que la A

- ! | phase 8
température et la pression sont constante: | coosbtoncedeplse | 3
£ a+p |
Lz————-‘x———)—%:—_—_—:—::: l_,
oUu(S,V) oU(S,V) L
T="—"""=cte p=—-——7>—-—>=cte 1 '
oS b \%4 | /’/ r !
I Y |
La convexité locale de 1’énergie ‘ h | -

interne nous indique que:

Figure 9: Schéma de coexistence lo-

0*U  oT T
- = = >0 et (78) cale de phase

952 9SS  Cy ~
0*U Op 1
—_— e = >

052 V. ksV — 0 (79)

De la méme maniere, il est aussi pos-
sible de décrire convexité locale de 1’enthalpie et de I’énergie libre ainsi
que la courbure de Gausss négative en passant par ces variables. De méme
pour la concavité locale de I’énergie libre de Gibbs et sa courbure de
Gauss positive.

On peut alors dire que Les potentiels thermodynamiques U (S, V), F(T,V), H(S, p)
et G(T',p) sont des fonctions convexes de leurs variables d’état extensives V' et

S et des fonctions concaves de leurs variables d’état intensives T et p.

Un petit résumé de cette partie peut étre fait grace au tableau

U %;}Ui convexe %Z% convexe
F 327}-21 concave gy; convexe
H | %gz convexe Gp2 concave
G ngfg? concave %;? concave
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Table 1: Criteéres de stabilité des potentiels thermodynamiques



6.4 Transitions de phase

Une phase est un état de la matieére qui occupe un sous-espace de ’espace
des états caractérisé par des propriétés physiques particulieres du systeme, noté
avec des lettres grecques. Une transition de phase est le passage d’'une
phase instable vers une phase stable du systeme en réponse a un processus.
On peut distinguer 2 types de transitions de phase selon la classification
d’Ehrenfest: les transitions du

. premier ordre caractérisées par des discontinuités des dérivées premieéres
de I’énergie libre de Gibbs G, donc V et S

. deuxiéme ordre caractérisées par des discontinuités des dérivées sec-
ondes de I’énergie libre de Gibbs G, donc de k7 et C),.

A température T et pression p,
I’état d’équilibre stable minimise G dans
Pespace (G, T, p). Dans I’espace de phase
(G, T,p,{Ny}), Vétat d’équilibre stable
minimise G et la phase stable est celle
dont p, est minimale avec Solide

Point critique

fa(T,p, {N}) = 3G(Tép—]\}jf\’a})

Point triple

Sur un diagramme de phase, comme
représenté sur la figure [I0] il est possible
d’observer 2 points particuliers: le point
triple qui est a la limite exacte entre Figure 10: Schéma de diagramme de
les états solide, liquide et gazeuz, puis le phase
point critique qui marque la fin de la
courbe de coexistence de phase entre les
états liquides et gazeux.

6.5 Chaleur latente

La chaleur latente est la chaleur fournie & la substance lors d’un processus a
température constante d’un état initial ¢ a un état final f : Q;—y = TAS;;.
Alors la chaleur latente de transition de phase (Q,_g)) est la chaleur
fournie lors d’une transition de phase a température constante. On note la
chaleur latente molaire:

Qo
lami) = 7yt = Tlsp = 50) (80)

ou S, = ]‘3—"‘ est ’entropie molaire (resp ). Vous pouvez vous représenter les
transitions de phase et I’évolution de la température en fonction de ’entropie
grace a la figure [T1]
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Figure 11: diagramme (T,S) représentant les transition de phase de 'eau

En se concentrant sur la coexistence de phase nous disant que po = pg, et
de méme pour leurs dérivées, on pourra alors trouver la relation de Gidds-
Duhem entre ces phases:

SodT — Vydp + Nodpe, =0 (81)

(resp B). Il serra alors possible d’écrire mathématiquement la pente de la courbe
de coexistence de phase (p,T):

dp  sg— Sa
dT_”uvaa

(82)

avec v, 3 les volumes molaires. On pourra alors réécrire la relation de Clausius-
Clapeyron comme:
d, l d, l
o _ st ot P _ g (83)
dT  T(v —vs) dr T(vg —v)
nous en profitons pour aussi définir la concentration molaire d’une sub-
stance A dans une phase a:

« NX - (0%
CA:E tq Az_:lCA:l (84)

Ainsi, il y a r — 1 variables indépendantes C¢% dans chaque phase a. Comme
il y a m phases, il y a donc m(r—1) variables indépendantes C'§ dans le systeéme.
Les condition d’équilibre chimique impose m — 1 contraintes sur les potentiels
chimiques, il y a alors r(m — 1) contraintes sur le systéeme. On trouve alors la
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régle des phases de Gibbs nous donnant le nombre de degrés de liberté
de notre systeme:
f=r—m+2 (85)

avec m le nombre de phases et r le nombre de substances dans notre systeme.

6.6 Gaz de Van Der Waals

Comme vu précédemment, un gaz parfait idéale peut étre décrit grace a la
célebre équation pV = NRT, mais la réalité est bien différente, c’est pourquoi
pour décrire un gaz réel on va plutot utiliser le modele du gaz de Van Der
Waals (VDW) qui se traduit par 1’équation:

2
(v+ %) (V — Nb) = NRT (86)
On rend compte des forces d’attraction entre les atomes et molécules décrites
par le parametre a > 0 ainsi que du volume occupé par ceux-ci grace au
parametre b > 0. On drvras alors aussi redéfinir I’énergie interne du gaz de
VDW comme la somme de ’énergie interne du gaz parfait U* et de I’énergie
d’interaction moléculaire aNn:

aN?
U=U"—aNn=U" - — (87)
1%
Ainsi on peut aussi écrire la pression du gaz de vdw comme p = p* — “é\'; et

son volume comme V = V* + Nb, ce qui nous permet de retrouver I’équation
en réécrivant ’équation d’état: p*V* = NRT.
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