
6 Transition de phase

6.1 Phase et transition de phase

Figure 6: Schéma de transition de
phase

Il existe plusieurs phases de la matière,
les plus connus sont bien évidemment
les états solides, liquides et gazeux,
mais il existe aussi des phases plus exo-
tiques de la matière comme le plasma,
les supraconducteurs ou les super-
fluides. Toutes ces phases ont des
propriétés physiques différentes. Il est
possible qu’un matériaux change de
phase suite à une transition de phase
(logique) qui traduit une instabilité
pour les conditions subis par le système.

6.2 concavité et convexité
des fonctions d’état

6.2.1 concavité de l’entropie

Il est possible de montrer que l’entropie S
est une fonction concave de U et V dans l’espace d’état (U ,S,V ). Il est possible
de le prouver en utilisant le premier et le second principe de la thermodynamique
(cf directement le cours). On obtient alors les conditions globales de la concavité
pour l’entropie comme:

S(U − ∆U ,V ) + S(U + ∆U ,V ) ⩽ 2S(U ,V ) (69)

Cela vaut pour représenter S en fonction de U mais aussi de la même façon
pour représenter S en fonction de V .

pour décrire des transitions de phase, caractérisées par des discontinuités
des dérivées partielles des variables d’état U , S et V , il est nécessaire de
déterminer également les conditions locales de concavité de l’entropie S. Celles-
ci sont définies au voisinage d’un point de l’espace des états (U ,S,V ). Pour
calculer cela, on procède de la même façon que dans le paragraphe précédent et
on trouve alors les conditions locales de la concavité de l’entropie:

∂2S(U ,V )

∂U2
⩽ 0

∂2S(U ,V )

∂V 2
⩽ 0 (70)

ainsi que la courbure de Gauss de la surface S(U ,V ) (découlant de la con-
dition globale précédente:

∂2S(U ,V )

∂U2

∂2S(U ,V )

∂V 2
−

(∂2S(U ,V )

∂U∂V

)2

⩾ 0 (71)
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6.2.2 convexité de l’énergie interne

La courbure de la fonction d’état entropie S(U ,V ) à volume constant V est
l’opposé de la courbure de la fonction d’état réciproque énergie interne U(S,V )
à volume constant V . Ces fonctions sont symétriques par rapport à la bissectrice
dans le plan (S,U).

En utilisant le relation de Gibbs et la différentielle de l’entropie, on trouve
alors la Condition locale de convexité de l’énergie interne à l’équilibre:

∂2U(S,V )

∂V 2
= −T

∂2S(S,V )

∂V 2
⩾ 0 (72)

ainsi que sa courbure de Gauss positive:

∂2U(S,V )

∂S2

∂2U(S,V )

∂V 2
−

(∂2U(S,V )

∂S∂V

)2

(73)

6.2.3 stabilité et entropie

6.3 Stabilité de l’entropie

Figure 7: Schéma de stabilité locale

La stabilité d’une quantité de matière
dans un certain état dépend du signe
de la courbure de l’entropie S(U ,V ) par
rapport aux variables d’état énergie in-
terne U et volume V dans l’espace des
états (U ,S,V ). La stabilité de l’état
dépend du signe de la dérivée seconde
de l’entropie par rapport à ses variables
d’état. Dans la figure 7, le critère de sta-

bilité locale est donné par ∂2S
∂U2 ≤ 0 et

son critère de stabilité globale est donné
par l’eq (74) ou la courbure globale est
négative ou nulle:

S(U − ∆U ,V ) + S(U + ∆U ,V ) ≤ 2S(U ,V ) (74)

Figure 8: Schéma de coexistence lo-
cale de phase

Il peut aussi y avoir une coexistance
de phase si la courbure de l’entropie
par rapport à l’énergie interne est nulle
comme illustré dans la figure 9, ce qui
peut être décrit par l’équation (75):

S(U ,V ) = λS(U1,V ) + (1 − λ)S(U2,V )
(75)

avec λ ∈ [0.1]
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6.3.1 stabilité et potentiels ther-
modynamiques

La stabilité d’une quantité de matière
dans un certain état dépend du signe de
la courbure de l’énergie interne U(S,V ) par rapport aux variables d’état entropie
S et volume V dans l’espace des états (U ,S,V ). Cela fonctionne exactement
comme ce que nous avons présenté à la partie précédente, mais cette fois on
écrit l’équation de stabilité:

U(S,V ) = λU(S1,V1) + (1 − λ)U(S2,V2) (76)

Figure 9: Schéma de coexistence lo-
cale de phase

Lors de la transition de la phase
α à la phase β, nous avons alors que la
température et la pression sont constante:

T =
∂U(S,V )

∂S
= cte p = −∂U(S,V )

∂V
= cte

(77)
La convexité locale de l’énergie

interne nous indique que:

∂2U

∂S2
=

∂T

∂S
=

T

CV
≥ 0 et (78)

∂2U

∂S2
= − ∂p

∂V
=

1

κSV
≥ 0 (79)

De la même manière, il est aussi pos-
sible de décrire convexité locale de l’enthalpie et de l’énergie libre ainsi
que la courbure de Gausss négative en passant par ces variables. De même
pour la concavité locale de l’énergie libre de Gibbs et sa courbure de
Gauss positive.

On peut alors dire que Les potentiels thermodynamiques U(S,V ),F (T ,V ),H(S, p)
et G(T , p) sont des fonctions convexes de leurs variables d’état extensives V et
S et des fonctions concaves de leurs variables d’état intensives T et p.

Un petit résumé de cette partie peut être fait grâce au tableau 1

U ∂2U
∂S2 convexe ∂2U

∂V 2 convexe

F ∂2F
∂T 2 concave ∂2F

∂V 2 convexe

H ∂2H
∂S2 convexe ∂2H

∂p2 concave

G ∂2G
∂T 2 concave ∂2G

∂p2 concave

Table 1: Critères de stabilité des potentiels thermodynamiques
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6.4 Transitions de phase

Une phase est un état de la matière qui occupe un sous-espace de l’espace
des états caractérisé par des propriétés physiques particulières du système, noté
avec des lettres grecques. Une transition de phase est le passage d’une
phase instable vers une phase stable du système en réponse à un processus.
On peut distinguer 2 types de transitions de phase selon la classification
d’Ehrenfest: les transitions du

. premier ordre caractérisées par des discontinuités des dérivées premières
de l’énergie libre de Gibbs G, donc V et S

. deuxième ordre caractérisées par des discontinuités des dérivées sec-
ondes de l’énergie libre de Gibbs G, donc de κT et Cp.

Figure 10: Schéma de diagramme de
phase

A température T et pression p,
l’état d’équilibre stable minimise G dans
l’espace (G,T , p). Dans l’espace de phase
(G,T , p, {Nα}), l’état d’équilibre stable
minimise G et la phase stable est celle
dont µα est minimale avec

µα(T , p, {Nα}) =
∂G(T , p, {Nα})

∂Nα

Sur un diagramme de phase, comme
représenté sur la figure 10, il est possible
d’observer 2 points particuliers: le point
triple qui est à la limite exacte entre
les états solide, liquide et gazeux, puis le
point critique qui marque la fin de la
courbe de coexistence de phase entre les
états liquides et gazeux.

6.5 Chaleur latente

La chaleur latente est la chaleur fournie à la substance lors d’un processus à
température constante d’un état initial i à un état final f : Qi→f = T∆Si→f .
Alors la chaleur latente de transition de phase (Qα→β)) est la chaleur
fournie lors d’une transition de phase à température constante. On note la
chaleur latente molaire:

lα→β) =
Qα→β)

Nα→β)
= T (sβ − sα) (80)

ou sα = Sα

Nα
est l’entropie molaire (resp β). Vous pouvez vous représenter les

transitions de phase et l’évolution de la température en fonction de l’entropie
grâce à la figure 11.
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Figure 11: diagramme (T,S) représentant les transition de phase de l’eau

En se concentrant sur la coexistence de phase nous disant que µα = µβ , et
de même pour leurs dérivées, on pourra alors trouver la relation de Gidds-
Duhem entre ces phases:

SαdT − Vαdp + Nαdµα = 0 (81)

(resp β). Il serra alors possible d’écrire mathématiquement la pente de la courbe
de coexistence de phase (p,T ):

dp

dT
=

sβ − sα
vβ − vα

(82)

avec vα,β les volumes molaires. On pourra alors réécrire la relation de Clausius-
Clapeyron comme:

dp

dT
=

lsl
T (vl − vs)

et
dp

dT
=

llg
T (vg − vl)

(83)

nous en profitons pour aussi définir la concentration molaire d’une sub-
stance A dans une phase α:

Cα
A =

Nα
A

Nα
tq

r∑
A=1

Cα
A = 1 (84)

Ainsi, il y a r−1 variables indépendantes Cα
A dans chaque phase α. Comme

il y a m phases, il y a donc m(r−1) variables indépendantes Cα
A dans le système.

Les condition d’équilibre chimique impose m − 1 contraintes sur les potentiels
chimiques, il y a alors r(m − 1) contraintes sur le système. On trouve alors la
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règle des phases de Gibbs nous donnant le nombre de degrés de liberté
de notre système:

f = r −m + 2 (85)

avec m le nombre de phases et r le nombre de substances dans notre système.

6.6 Gaz de Van Der Waals

Comme vu précédemment, un gaz parfait idéale peut être décrit grâce à la
célèbre équation pV = NRT , mais la réalité est bien différente, c’est pourquoi
pour décrire un gaz réel on va plutôt utiliser le modèle du gaz de Van Der
Waals (VDW) qui se traduit par l’équation:(

p +
N2a

V 2

)
(V −Nb) = NRT (86)

On rend compte des forces d’attraction entre les atomes et molécules décrites
par le paramètre a > 0 ainsi que du volume occupé par ceux-ci grâce au
paramètre b > 0. On drvras alors aussi redéfinir l’énergie interne du gaz de
VDW comme la somme de l’énergie interne du gaz parfait U∗ et de l’énergie
d’interaction moléculaire aNn:

U = U∗ − aNn = U∗ − aN2

V
(87)

Ainsi on peut aussi écrire la pression du gaz de vdw comme p = p∗ − aN2

V 2 et
son volume comme V = V ∗ + Nb, ce qui nous permet de retrouver l’équation
(86) en réécrivant l’équation d’état: p∗V ∗ = NRT .
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